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1. Module context

While designing a training course, the relationship between this module and the others,
would be maintained by keeping them close together in the syllabus and place them in a
logical sequence. The actual selection of the topics and the depth of training would, of
course, depend on the training needs of the participants, i.e. their knowledge level and skills
performance upon the start of the course.



Hydrology Project Training Module File: “ 11 How to compile rainfall data.doc” Version Feb. 2002 Page 3

2. Module profile

Title : How to compile rainfall data

Target group : Assistant Hydrologists, Hydrologists, Data Processing Centre
Managers

Duration : Five sessions of 60 minutes each

Objectives : After the training the participants will be able to:
• Compile rainfall data for different durations
• Estimate areal rainfall by different methods
• Drawing isohyets

Key concepts : • Aggregation of data to longer durations
• Areal rainfall
• Arithmetic average
• Weighted average
• Thiessen method
• Kriging method
• Inverse distance method

Training methods : Lecture, exercises, softwares

Training tools
required

: Board, OHS, computers

Handouts : As provided in this module

Further reading
and references

:
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3. Session plan

No
Activities Time Tools

1 General
• Important points

5 min
OHS 1

2 Aggregatiuon of data to longer duration
• Objectives
• Plot of hourly data
• Plot of compiled daily data
• Plot of weekly data
• Plot of ten-daily data
• Plot of monthly data
• Plot of yearly data
• Multiple plots for various intervals (a)
• Multiple plots for various intervals (b)
Working with HYMOS

5 min
OHS 2
OHS 3
OHS 4
OHS 5
OHS 6
OHS 7
OHS 8
OHS 9
OHS 10

3 Estimation of areal rainfall (1)
• Objective & definition
• Various methods
• Arithmetic & weighted average
• Example 3.1 – Arithmetic average
• Thiessen polygon method
• Example 3.2 (a) – Thiessen polygons
• Example 3.2 (b) – Thiessen weights & plot of areal average

series
• Comparison of results from two methods
Working with HYMOS

15 min
OHS 11
OHS 12
OHS 13
OHS 14
OHS 15
OHS 16
OHS 17

OHS 18

4 Estimation of areal rainfall (2)
• Procedure in Isohyetal Method, flat terrain
• Example Isohyetal Method
• Procedure Isohyetal Method, mountainous terrain
• Procedure Isopercental method
• Combining isopercentals with normals
• Drawing isohyets with additional data from normals
• Procedure Hypsometric Method
• Hypsometric Method application

30 min
OHS 23
OHS 24
OHS 25
OHS 26
OHS 27
OHS 28
OHS 29
OHS 30
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5 Estimation of areal rainfall (3)
• Rainfall interpolation by Kriging and Inverse Distance Meth.
• Estimation of values on a grid
• Rainfall interpolation by kriging (1)
• Assumption for ordinary kriging
• Kriging: unbiasedness and variance minimisation
• Kriging equations
• Exponential spatial correlation function
• Exponential co-variance function
• Exponential semi-variogram
• Possible semi-variogram models in HYMOS
• Sensitivity analysis on variogram parameters (1)
• Sensitivity analysis on variogram parameters (2)
• Sensitivity analysis on variogram parameters (3)
• Sensitivity analysis on variogram parameters (4)
• Sensitivity analysis on variogram parameters (5)
• Application of kriging and inverse distance method
• Example Bilodra: spatial correlation
• Example Bilodra: fit of semi-variance to spherical model (1)
• Example Bilodra: fit of semi-variance to spherical model (2)
• Example Bilodra: fit of semi-variance to exponential model
• Example Bilodra: isohyets June 1984 using kriging
• Example Bilodra: estimation variance June 1984
• Example Bilodra: isohyets June 1984 using inverse distance

90 min
OHS 31
OHS 32
OHS 33
OHS 34
OHS 35
OHS 36
OHS 37
OHS 38
OHS 39
OHS 40
OHS 41
OHS 42
OHS 43
OHS 44
OHS 45
OHS 46
OHS 47
OHS 48
OHS 49
OHS 50
OHS 51
OHS 52
OHS 53
OHS 54

6 Transformation of non-equidistant to equidistant series
• General

3 min
OHS 19

7 Compilation of maximum and minimum series
• Statistical inferences
• Example 5.1 (a) – Min., max., mean etc.
• Example 5.1 (b) – Tabular results

2 min
OHS 20
OHS 21
OHS 22

8 Exercise
• Compilation of hourly rainfall data to daily interval and

observed daily interval to ten-daily, monthly and yearly
intervals

• Estimation of areal average using arithmetic and Thiessen
polygon method

• Compilation of extremes for ten-daily rainfall data series for
part of year (July 1 – Sept. 30)

• Fitting of semi-variogram for monthly rainfall in Bilodra
catchment (1960-2000), based on aggregated daily rainfall
series. Fit different semi-variance models and compare the
results in a spreadsheet

• Application of semi-variance models to selected months
and compare the results of different models (interpolations
and variances)

• Estimate monthly isohyets by Inverse Distance Method
using different powers and compare results, also with
kriging results

30 min

30 min

30 min

30 min

20 min

10 min



Hydrology Project Training Module File: “ 11 How to compile rainfall data.doc” Version Feb. 2002 Page 6

4. Overhead/flipchart master
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5. Handout
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Add copy of Main text in chapter 7, for all participants.
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6. Additional handout
These handouts are distributed during delivery and contain test questions, answers to
questions, special worksheets, optional information, and other matters you would not like to
be seen in the regular handouts.

It is a good practice to pre-punch these additional handouts, so the participants can easily
insert them in the main handout folder.



Hydrology Project Training Module File: “ 11 How to compile rainfall data.doc” Version:  Feb. 2002 Page 10

7. Main text

Contents

1. General 1

2. Aggregation of data to longer durations 1

3. Estimation of areal rainfall 5

4. Transformation of non-equidistant to equidistant series 25

5. Compilation of minimum, maximum and mean series 25
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How to compile rainfall data

1. General

• Rainfall compilation is the process by which observed rainfall is transformed:

 from one time interval to another
 from one unit of measurement to another
 from point to areal values
 from non-equidistant to equidistant series

• Compilation is required for validation, reporting and analysis

• Compilation is carried out at the State Data Processing Centre; it is done prior to
validation if required, but final compilation is carried out after correction and
‘completion’.

2. Aggregation of data to longer durations

Rainfall from different sources is observed at different time intervals, but these are generally
one day or less. For the standard raingauge, rainfall is measured once or twice daily. For
autographic records, a continuous trace is produced from which hourly rainfall is extracted.
For digital rainfall recorders rainfall is recorded at variable interval with each tip of the tipping
bucket. Hourly data are typically aggregated to daily; daily data are typically aggregated to
weekly, ten daily, 15 daily, monthly, seasonally or yearly time intervals

Aggregation to longer time intervals is required for validation and analysis. For validation
small persistent errors may not be detected at the small time interval of observation but may
more readily be detected at longer time intervals.

2.1 Aggregation of daily to weekly

Aggregation of daily to weekly time interval is usually done by considering the first 51 weeks
of equal length (i.e. 7 days) and the last 52nd week of either 8 or 9 days according to whether
the year is non-leap year or a leap year respectively. The rainfall for such weekly time
periods is obtained by simple summation of consecutive sets of seven days rainfalls. The
last week’s rainfall is obtained by summing up the last 8 or 9 days daily rainfall values.

For some application it may be required to get the weekly compilation done for the exact
calendar weeks (from Monday to Sunday). In such a case the first week in any year will start
from the first Monday in that year and thus there will be 51 or 52 full weeks in the year and
one or more days left in the beginning and/or end of the year. The days left out at the end of
a year or beginning of the next year could be considered for the 52nd of the year under
consideration. There will also be cases of a 53rd week when the 1st day of the year is also
the first day of the week (for non-leap years) and 1st or 2nd day of the year is also first day of
the week (for leap years).

2.2 Aggregation of daily to ten daily

Aggregation of daily to ten daily time interval is usually done by considering each month of
three ten daily periods. Hence, every month will have first two ten daily periods of ten days
each and last ten daily period of either 8, 9, 10 or 11 days according to the month and  the
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year. Rainfall data for such ten daily periods is obtained by summing the corresponding daily
rainfall data. Rainfall data for 15 daily periods is also be obtained in a similar manner for
each of the two parts of every month.

2.3 Aggregation from daily to monthly

Monthly data are obtained from daily data by summing the daily rainfall data for the calendar
months. Thus, the number of daily data to be summed up will be 28, 29, 30 or 31 according
to the month and year under consideration. Similarly, yearly rainfall data are obtained by
either summing the corresponding daily data or monthly data, if available.

2.4 Hourly to other intervals

From rainfall data at hourly or lesser time intervals, it may be desired to obtain rainfall data
for every 2 hours, 3 hours, 6 hours, 12 hours etc. for any specific requirement. Such
compilations are carried out by simply adding up the corresponding rainfall data at available
smaller time interval.

Example 2.1:
Daily rainfall at ANIOR station (KHEDA catchment) is observed with Standard Raingauge
(SRG). An Autographic Raingauge (ARG) is also available at the same station for recording
rainfall continuously and hourly rainfall data is obtained by tabulating information from the
chart records.

It is required that the hourly data is compiled to the daily interval corresponding to the
observations synoptic observations at 0830 hrs. This compilation is done using the
aggregation option and choosing to convert from hourly to daily interval. The observed
hourly data and compiled daily data is shown if Fig. 2.1 and Fig. 2.2 respectively.

Fig. 2.1:  Plot of observed hourly rainfall data
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Fig. 2.2:  Compiled daily rainfall from hourly data tabulated from ARG charts

Similarly, daily data observed using SRG is required to be compiled at weekly, ten-daily,
monthly and/or yearly interval for various application and for the purpose of data validation.
For this, the daily data obtained using SRG is taken as the basic data and compilation is
done to weekly, ten-daily, monthly and yearly intervals. These are illustrated in Fig. 2.3, Fig.
2.4, Fig. 2.5 and Fig. 2.6 respectively.

Fig. 2.3:  Compiled weekly rainfall from hourly data tabulated from ARG charts
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Fig. 2.4:  Compiled ten-daily data from daily data obtained from SRG records

Fig. 2.5:  Compiled monthly data from daily data obtained from SRG records

Fig. 2.6:  Compiled yearly data from daily data obtained from SRG records
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3. Estimation of areal rainfall

3.1 General description

Raingauges generally measure rainfall at individual points. However, many
hydrological applications require the average depth of rainfall occurring over an area
which can then be compared directly with runoff from that area. The area under
consideration can be a principal river basin or a component sub-basin. Occasionally,
average areal rainfall is required for country, state or other administrative unit, and the areal
average is obtained within the appropriate political or administrative boundary.

Since rainfall is spatially variable and the spatial distribution varies between events,
point rainfall does not provide a precise estimate or representation of the areal
rainfall. The areal rainfall will always be an estimate and not the true rainfall depth
irrespective of the method.

There are number of methods which can be employed for estimation of the areal
rainfall including:

• The Arithmetic average method,
• Weighted average method
• Thiessen polygon method.
• Kriging techniques

All these methods for estimation of areal average rainfall compute the weighted
average of the point rainfall values; the difference between various methods is only in
assigning the weights to these individual point rainfall values, the weights being
primarily based on the proportional area represented by a point gauge. Methods are outlined
below:

3.2 Arithmetic average

This is the simplest of all the methods and as the name suggests the areal average
rainfall depth is estimated by simple averaging of all selected point rainfall values for
the area under consideration. That is:

Where:
Pat= estimated average areal rainfall depth at time t
Pit  =  individual point rainfall values considered for an area, at station i ( for i = 1,N) and time
t,
N  =  total number of point rainfall stations considered

In this case, all point rainfall stations are allocated weights of equal magnitude, equal to the
reciprocal of the total number of stations considered. Generally, stations located within the
area under consideration are taken into account. However, it is good practice also to include
such stations which are outside but close to the areal boundary and thus to represent some
part of the areal rainfall within the boundary. This method is also sometimes called as
unweighted average method since all the stations are given the same weights irrespective of
their locations.
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This method gives satisfactory estimates and is recommended where the area under
consideration is flat, the spatial distribution of rainfall is fairly uniform, and the
variation of individual gauge records from the mean is not great.

3.3 Weighted average using user defined weights

In the arithmetic averaging method, all rainfall stations are assigned equal weights. To
account for orographic effects and especially where raingauges are predominantly
located in the lower rainfall valleys, it is sometimes required to weight the stations
differently. In this case, instead of equal weights, user defined weights can be
assigned to the stations under consideration. The estimation of areal average rainfall
depth can be made as follows:

Where:
ci  =  weight assigned to individual raingauge station i (i = 1,N).

To account for under-representation by gauges located in valleys the weights do not
necessarily need to add up to 1.

3.4 Thiessen polygon method

This widely-used method was proposed by A.M. Thiessen in 1911. The Thiessen polygon
method accounts for the variability in spatial distribution of gauges and the
consequent variable area
which each gauge represents. The areas representing each gauge are defined by drawing
lines between adjacent stations on a map. The perpendicular bisectors of these lines form a
pattern of polygons (the Thiessen polygons) with one station in each polygon (see Fig. 3.1).
Stations outside the basin boundary should be included in the analysis as they may have
polygons which extend into the basin area. The area of a polygon for an individual station as
a proportion of the total basin area represents the Thiessen weight for that station. Areal
rainfall is thus estimated by first multiplying individual station totals by their Thiessen weights
and then summing the weighted totals as follows:

where:
Ai =  the area of Thiessen polygon for station i
A  =  total area under consideration
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Fig. 3.1:  Small basin upto BILODRA gauging site (portion shown with Thiessen
polygons)

The Thiessen method is objective and readily computerised but is not ideal for mountainous
areas where orographic effects are significant or where raingauges are predominantly
located at lower elevations of the basin. Altitude weighted polygons (including altitude as
well as areal effects) have been devised but are not widely used.

Example 3.1
Areal average rainfall for a small basin upto BILODRA gauging site (shown highlighted in
Fig. 3.1) in KHEDA catchment is required to be compiled on the basis of daily rainfall data
observed at a number of raingauges in and around the region. Areal average is worked out
using two methods: (a) Arithmetic average and (b) Thiessen method.

(a)  Arithmetic Average
For the arithmetic average method rainfall stations located inside and very nearby to the
catchment boundary are considered and equal weights are assigned to all of them. Since
there are 11 stations considered the individual station weights work out as 0.0909 and is
given in Table 3.1 below. On the basis of these equal station weights daily areal average is
computed. The compiled areal daily rainfall worked out using arithmetic average method is
shown for the year 1994 in Fig. 3.2.
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Table 3.1:  List of stations and corresponding weights for arithmetic average method

 Areal computation – Arithmetic Average

 Areal series: BILODRA     MA1

 Station weights
 BALASINOR    =   0.0909
 DAKOR        =   0.0909
 KAPADWANJ    =   0.0909
 BAYAD        =   0.0909
 MAHISA       =   0.0909
 MAHUDHA      =   0.0909
 SAVLITANK    =   0.0909
 THASARA      =   0.0909
 VAGHAROLI    =   0.0909
 VADOL        =   0.0909
 KATHLAL      =   0.0909

 Sum          =    0.999

Fig. 3.2:  Plot of areal daily rainfall for BILODRA catchment using arithmetic
average method

(b) Thiessen polygon method
Computation of areal average using Thiessen method is accomplished by first getting the
Thiessen polygon layer (defining the boundary of Thiessen polygon for each contributing
point rainfall station). The station weights are automatically worked out on the basis of areas
of these polygons with respect to the total area of the catchment. The layout of the Thiessen
polygons as worked out by the system is graphically shown in Fig. 3.1 and the
corresponding station weights are as given in Table 3.2. On the basis of these Thiessen
polygon weights the areal average of the basin is computed and this is shown in Fig. 3.3 for
the year 1994. In this case it may be noticed that there is no significant change in the values
of the areal rainfall obtained by the two methods primarily on account of lesser variation in
rainfall from station to station.
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Table 3.2: List of stations and corresponding weights as per Thiessen polygon
method

 Areal computation – Thiessen Polygon Method

 Areal series: BILODRA     MA3

 Station weights
 ANIOR        =   0.0127
 BALASINOR    =   0.0556
 BAYAD        =   0.1785
 DAKOR        =   0.0659
 KAPADWANJ    =   0.1369
 KATHLAL      =   0.0763
 MAHISA       =   0.0969
 MAHUDHA      =   0.0755
 SAVLITANK    =   0.0724
 THASARA      =   0.0348
 VADOL        =   0.1329
 VAGHAROLI    =   0.0610

 Sum          =   1.00

Fig. 3.4: Plot of areal daily rainfall for BILODRA catchment using Thiessen polygon
method

3.5 Isohyetal and related methods

The main difficulty with the Thiessen method is its inability to deal with orographical effects
on rainfall. A method, which can incorporate such effects, is the isohyetal method, where
lines of equal rainfall (= isohyets) are being drawn by interpolation between point rainfall
stations taking into account orographic effects.

In flat areas where no orographic effects are present the method simply interpolates linearly
between the point rainfall stations. Manually the procedure is as follows. On a basin map first
the locations of the rainfall stations within the basin and outside near the basin boundary are
plotted.  Next, the stations are connected with their neighbouring stations by straight lines.
Dependent on the rain depths for which isohyets are to be shown by linear interpolation
between two neighbouring stations the position of the isohyet(s) on these connecting lines
are indicated. After having completed this for all connected stations, smooth curves are
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drawn through the points marked on the straight lines between the stations connecting the
concurrent rainfall values for which isohyets are to be shown, see Figure 3.5. In drawing the
isohyets personal experience with local conditions and information on storm orientation can
be taken into account. Subsequently, the area between two adjacent isohyets and the
catchment boundary is planimetered. The average rainfall obtained from the two adjacent
isohyets is assumed to have occurred over the entire inter-isohyet area. Hence, if the
isohyets are indicated by P1, P2, …, Pn with inter-isohyet areas a1, a2, …, an-1 the mean
precipitation over the catchment is computed from:

          (3.4)

It is noted that if the maximum and/or minimum point rainfall value(s) are within the
catchment boundaries then P1 and/or Pn is to be replaced by the highest and/or lowest point
rainfall values. A slightly biased result will be obtained if e.g. the lowest (highest) isohyet is
located outside the catchment area as the averaging over two successive isohyets will
underestimate (overestimate) the average rainfall in the area bounded by the catchment
boundary and the first inside isohyet.

Figure 3.5:
Example of drawing of
isohyets using linear
interpolation

For flat areas the isohyetal method is superior to the Thiessen method if individual storms
are considered as it allows for incorporation of storm features like orientation; for monthly,
seasonal or annual values such preference is not available. But its added value is
particularly generated when special topographically induced meteorological features like
orographic effects are present in the catchment rainfall. In such cases the above procedure
is executed with a catchment map overlaying a topographical map to be able to draw the
isohyets parallel to the contour lines. Also the extent of rain shadow areas at the leeward
side of mountain chains can easily be identified from topographical maps. The computations
are again carried out with the aid of equation 3.4. In such situations the isohyetal method is
likely to be superior to the Thiessen method.

The isopercental method is very well suited to incorporate long term seasonal orographical
patterns in drawing isohyets for individual storms or seasons. The assumption is that the
long term seasonal orographical effect as displayed in the isohyets of season normals
applies for individual storms and seasons as well. The procedure involves the following
steps, and is worked out in Example 3.2:
1. compute point rainfall as percentage of seasonal normal for all point rainfall stations
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2. draw isopercentals (= lines of equal actual point rainfall to station normal rainfall) on a
transparent overlay

3. superimpose the overlay on the seasonal isohyetal map
4. mark each crossing of seasonal isohyets with isopercentals
5. multiply for each crossing the isohyet with the isopercental value and add the value to

the crossing on the map with the observed rainfall values; hence, the data set is
extended with the rainfall estimated derived in step 4

6. draw isohyets using linear interpolation while making use of all data points, i.e. observed
and estimated data (see step 5).

Special attention is to be paid to situations where at the higher elevations raingauge stations
are non-existing. Then the orographic effect has to be extrapolated from the lower reaches
of the mountains by estimating a relation between rainfall and elevation which is assumed to
be valid for the higher elevations as well. Using this rainfall-elevation curve a number of
points in the ungauged upper reaches are added to the point rainfall data to guide the
interpolation process.

Figure 3.6:
Principle of hypsometric method

A simple technique to deal with such situations is the hypsometric method, see e.g.
Dingman, 1994, where a precipitation-elevation curve is combined with an area-elevation
curve (called hypsometric curve) to determine the areal rainfall. The latter method avoids
recurrent planimetering of inter-isohyet areas, whereas the results will be similar to the
isohyetal method. The precipitation-elevation curve has to be prepared for each storm,
month, season or year, but its development will be guided by the rainfall normal-elevation
curve also called the orographic equation. Often the orographic equation can be
approximated by a simple linear relation of the form:

P(z) = a + bz                (3.5)

This relation may vary systematically in a region (e.g. the windward side of a mountain range
may have a more rapid increase of precipitation with elevation than the leeward side). In
such cases separate hypsometric curves and orographic equations are established for the
distinguished sub-regions. The areal rainfall is estimated by:

            (3.6)

where: P     = areal rainfall
 P(zi)  = rainfall read from precipitation-elevation curve at elevation zi

 ∆A(zi) = percentage of basin area contained within elevation zi ± 1/2∆zi

n        = number of elevation interval in the hypsometric curve has been divided.
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Example 3.2
In this example the application of the isopercental method is demonstrated (NIH, 1988). The
areal rainfall for the storm of 30 August 1982 has to be determined for the catchment shown
in Figure 3.7a. The total catchment area amounts 5,600 km2. The observed and normal
annual rainfall amounts for the point rainfall stations in the area are given in Table 3.3.

Station 30 August 1982 storm Normal annual rainfall Storm rainfall as
percentage of annual

normal
(mm) (mm) (%)

1. Paikmal
2. Padampur
3. Bijepur
4. Sohela
5. Binka
6. Bolangir

338.0
177.0
521.0
262.0
158.0
401.6

1728
1302
1237
1247
1493
1440

19.6
13.6
42.1
21.0
10.6
27.9

Table 3.3: Storm rainfall and annual normals

For each station the point rainfall as percentage of seasonal normal is displayed in the last
column of Table 3.3. Based on this information isopercetals are drawn on a transparent
overlay, which is subsequently superimposed on the annual normal isohyetal map. The
intersections of the isopercetals and isohyets are identified and for each intersection the
isopercental is multiplied with the isohyet to get an estimate of the storm rainfall for that
point. These estimates are then added to the point rainfall observations to draw the isohyets,
see Figure 3.7b. The inter-isohyet area is planimetered and the areal rainfall is subsequently
computed with the aid of equation 3.4 as shown in Table 3.4.

Isohyetal range Mean rainfall Area Volume
(mm) (mm) (km2) (km2xmm)

110-150
150-200
177-200
200-250
250-300
300-400
400-500
500-521

130
175

188.5
225
275
350
450

510.5

80
600
600

3370
620
230

90
10

10400
105000
113100
758250
170500

80500
40500

5105
Total 5600

Average
1283355

1283355/5600=
229.2 mm

Table 3.4: Computation of areal rainfall by isohyetal/isopercental method

Figure 3.7a:
Isopercental map
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Figure 3.7b:
Isohyetal map drawn by
isopercental method

3.6 Kriging method

General

The Kriging Method is an interpolation method. It provides rainfall estimates (or estimates of
any other variable) at points (point-kriging) or blocks (block-kriging) based on a weighted
average of observations made at surrounding stations. In this section point-kriging will be
discussed. In the application of the kriging method for areal rainfall estimation and drawing of
isohyets a dense grid is put over the catchment. By estimating the rainfall for the gridpoints
the areal rainfall is simply determined as the average rainfall of all grid points within the
catchment. In addition, in view of the dense grid, it is very easy to draw isohyets based on
the rainfall values at the grid points.

At each gridpoint the rainfall is estimated from:

At each gridpoint the rainfall is estimated from:

          (3.7)

where: Pe0  = rainfall estimate at some gridpoint “0”
w0,k  = weight of station k in the estimate of the rainfall at point “0”
Pk    = rainfall observed at station k
N     = number of stations considered in the estimation of Pe0

The weights are different for each grid point and observation station. The weight given to a
particular observation station k in estimating the rainfall at gridpoint “0” depends on the
gridpoint-station distance and the spatial correlation structure of the rainfall field. The kriging
method provides weights, which have the following properties:

• the weights are linear, i.e. the estimates are weighted linear combinations of the
available observations

• the weights lead to unbiased estimates of the rainfall at the grid points, i.e. the expected
estimation error at all grid points is zero

• the weights minimise the error variance at all grid points.
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Particularly the error variance minimisation distinguishes the kriging method from other
methods like e.g. inverse distance weighting. The advantage of the kriging method above
other methods is that it provides besides the best linear estimate of rainfall for a point on the
grid also the uncertainty in the estimate. The latter property makes the method useful if
locations for additional stations have to be selected when the network is to be upgraded,
because then the new locations can be chosen such that overall error variance is reduced
most.

Bias elimination and error variance minimisation
The claims of unbiasedness and minimum error variance require further explanation. Let the
true rainfall at location 0 be indicated by P0 then the estimation error at “0” becomes:

e0 = Pe0 – P0           (3.8)

with Pe0 estimated by (3.7). It is clear from (3.8) that any statement about the mean and
variance of the estimation error requires knowledge about the true behaviour of the rainfall at
unmeasured locations, which is not known. This problem is solved by hypothesising:

• that the rainfall in the catchment is statistically homogeneous so that the rainfall at all
observation stations is governed by the same probability distribution

• consequently, under the above assumption also the rainfall at the unmeasured locations
in the catchment follows the same probability distribution as applicable to the
observation sites.

Hence, any pair of locations within the catchment (measured or unmeasured) has a joint
probability distribution that depends only on the distance between the locations and not on
their locations. So:

• at all locations E[P] is the same and hence E[P(x1)] – E[P(x1-d)] = 0, where d refers to
distance

• the covariance between any pair of locations is only a function of the distance d between
the locations and not dependent of the location itself: C(d).

The unbiasedness implies:

Hence for each and every grid point the sum of the weights should be 1 to ensure
unbiasedness:

          (3.9)

The error variance can be shown to be (see e.g. Isaaks and Srivastava, 1989):

        (3.10)

where 0 refers to the site with unknown rainfall and i,j to the observation station locations.
Minimising the error variance implies equating the N first partial derivatives of σe

2 to zero to
solve the w0,i. In doing so the weights w0,i will not necessarily sum up to 1 as it should to
ensure unbiasedness. Therefore, in the computational process one more equation is added
to the set of equations to solve w0,i, which includes a Lagrangian multiplyer µ. The set of
equations to solve the stations weights, also called ordinary kriging system, then reads:
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C . w = D         (3.11)

where:

Note that the last column and row in C are added because of the introduction of the
Lagrangian multiplyer µ in the set of N+1 equations. By inverting the covariance matrix the
station weights to estimate the rainfall at location 0 follow from (3.11) as:

w = C-1 . D         (3.12)

The error variance is then determined from:

σe
2 = σP

2 – wT . D         (3.13)

From the above equations it is observed that C-1 is to be determined only once as it is solely
determined by the covariances between the observation stations being a function of the
distance between the stations only. Matrix D differs for every grid point as the distances
between location “0” and the gauging stations vary from grid point to grid point.

Covariance and variogram models
To actually solve above equations a function is required which describes the covariance of
the rainfall field as a function of distance. For this we recall the correlation structure between
the rainfall stations discussed in module 9. The spatial correlation structure is usually well
described by an exponential relation of the following type:

r(d) = r0 exp(-d/d0)         (3.14)

where: r(d) = correlation coefficient as a function of distance
r0    = correlation coefficient at small distance, with r0 ≤ 1
d0   = characteristic correlation distance.

Two features of this function are of importance:

• r0 ≤ 1, where values < 1 are usually found in practice due to measurement errors or
micro-climatic variations

• the characteristic correlation distance d0, i.e the distance at which r(d) reduces to 0.37r0.
It is a measure for the spatial extent of the correlation, e.g. the daily rainfall d0 is much
smaller than the monthly rainfall d0. Note that for d = 3 d0 the correlation has effectively
vanished (only 5% of the correlation at d = 0 is left).

The exponential correlation function is shown in Figure (3.8).

The covariance function of the exponential model is generally expressed as:

        (3.15)
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Since according to the definition C(d) = r(d)σP
2, the coefficients C0 and C1 in (3.15) can be

related to those of the exponential correlation model in (3.14) as follows:

C0 = σP
2(1-r0) ;     C1 = σP

2r0 and a = 3d0         (3.16)

Figure 3.8 Spatial correlation structure of rainfall field

In kriging literature instead of using the covariance function C(d) often the semi-variogram
γ(d) is used, which is halve of the expected squared difference between the rainfall at
locations distanced d apart; γ(d) is easily shown to be related to C(d) as:

γ(d) = ½ E[{P(x1) – P(x1-d)}2] = σP
2 – C(d)         (3.17)

Hence the (semi-)variogram of the exponential model reads:

        (3.18)

Figure 3.9:
Exponential covariance model
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Figure 3.10:
Exponential variogram model

Features of the exponential model are following:

• C0, which is called the nugget effect, provides a discontinuity at the origin; according to
(3.16):  C0 = σP

2(1-r0), hence in most applications of this model to rainfall data a small
nugget effect will always be present

• The distance ‘a’ in the covariance function and variogram is called the range and refers
to the distance above which the functions are essentially constant; for the exponential
model a = 3d0 can be applied

• C0 + C1 is called the sill of the variogram and provides the limiting value for large
distance and becomes equal to σP

2; it also gives the covariance for d = 0.

Other Covariance and semi-variogram models
Beside the exponential model other models are in use for ordinary kriging, viz:

• Spherical model, and
• Gaussian model

These models have the following forms:

Spherical:

        (3.19)

Gaussian:

        (3.20)

The Spherical and Gaussian models are shown with the Exponential Model in Figure 3.11.
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Figure 3.11:
Example of Spherical,
Gaussian and Exponential
type of variogram models,
with C0=0,C1=1 and a = 10

The spherical model has a linear behaviour at small separation distances near the origin,
with the tangent at the origin intersecting the sill at about 2/3 of the range “a”. The model
reaches the sill at the range. The gaussian model is fit for extremely continuous phenomena,
with only gradually diminishing correlation near the origin, much smoother than the other two
models. The range “a” is at a distance the variogram value is 95% of the sill. The exponential
model rises sharper than the other two but flattens out more gradually at larger distances;
the tangent at the origin reaches the sill at about 1/5 of the range.

Sensitivity analysis of variogram model parameters
To show the effect of variation in the covariance or variogram models on the weights
attributed to the observation stations to estimate the value at a grid point an example
presented by Isaaks and Srivastava (1989) is presented. Observations made at the stations
as shown in Figure 3.12 are used. Some 7 stations are available to estimate the value at
point ‘0’ (65,137).
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Figure 3.12:
Layout of network with
location of stations 1, …., 7

Observations:
Station 1: 477
Station 2: 696
Station 3: 227
Station 4: 646
Station 5: 606
Station 6: 791
Station 7: 783

The following models (cases) have been applied to estimate the value for “0”:

Figure The covariance and variograms for the cases are shown in Figures 3.13 and 3.14.

Figure 3.13:
Covariance models for the
various cases
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Figure 3.14:
Semi-variograms for the
various cases

The results of the estimate and variance at point “0” as well as the weights of the stations
computed with the models in estimating point “0” are presented in Table 3.5.

Stations 1 2 3 4 5 6 7Case Estimate
at “0”

Error
variance Distance to “0” 4.47 3.61 8.06 9.49 6.71 8.94 13.45

(mm) (mm2) weights
1 593 8.86 0.17 0.32 0.13 0.09 0.15 0.06 0.09
2 593 17.91 0.17 0.32 0.13 0.09 0.15 0.06 0.09
3 559 4.78 -0.02 0.68 0.17 -0.01 0.44 -0.29 0.04
4 603 11.23 0.15 0.18 0.14 0.14 0.13 0.13 0.14
5 572 5.76 0.18 0.38 0.14 0.07 0.20 0.00 0.03
ID 590 - 0.44 0.49 0.02 0.01 0.02 0.01 0.01

Table 3.5: Results of computations for Cases 1 to 5 and ID
(=Inverse Distance Method) with p = 2

From the results the following can be concluded:

• Effect of scale: compare Case 1 with Case 2
In Case 2 the process variance, i.e. the sill is twice as large as in Case 1. The only
effect this has on the result is a doubled error variance at “0”. The weights and therefore
also the estimate remains unchanged. The result is easily confirmed from equations
(2.12) and (3.13) as both C, D and σP

2 are multiplied with a factor 2 in the second case.
• Effect of shape: compare Case 1 with Case 3

In Case 3 the spatial continuity near the origin is much larger than in Case 1, but the sill
is the same in both cases. It is observed that in Case 3 the estimate for “0” is almost
entirely determined by the three nearest stations. Note that kriging does cope with
clustered stations; even negative weights are generated by stations in the clusters of
stations (5, 6) and (1, 2) to reduce the effect of a particular cluster. Note also that the
estimate has changed and that the error variance has reduced as more weight is given
to stations at small distance. It shows that due attention is to be given to the correlation
structure at small distances as it affects the outcome significantly.

• The nugget effect: compare Case 1 with Case 4
In Case 4, which shows a strong nugget effect, the spatial correlation has substantially
been reduced near the origin compared to Case 1. As a result the model discriminates
less among the stations. This is reflected in the weights given to the stations. It is
observed that almost equal weight is given to the stations in Case 4. In case correlation
would have been zero the weights would have been exactly equal.
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• Effect of range: compare Case 1 with Case 5
The range in Case 5 is twice as large as in Case 1. It means that the spatial correlation
is more pronounced than in Case 1. Hence one would expect more weight to the
nearest stations and a reduced error variance, which is indeed the case as can be
observed from Table 3.5. Cases1 and 5 basically are representative for rainfall at a low
and high aggregation level, respectively (e.g. daily data and monthly data).

There are more effects to be concerned about like effects of anisotropy (spatial covariance
being direction dependent) and spatial inhomogeneity (like trends due to orographic effects).
The latter can be dealt with by normalising or detrending the data prior to the application of
kriging and denormalise or re-invoke the trend after the computations. In case of anisotropy
the contour map of the covariance surface will be elliptic rather than circular. Anisotropy will
require variograms to be developed for the two main axis of the ellips separately.

Estimation of the spatial covariance function or variogram.
Generally the spatial correlation (and hence the spatial covariance) as a function of distance
will show a huge scatter as shown in Figures 1.1 to 1.4 of Module 9. To reduce the scatter
the variogram is being estimated from average values per distance interval. The distance
intervals are equal and should be selected such that sufficient data points are present in an
interval but also that the correct nature of the spatial correlation is reflected in the estimated
variogram.

Alternative to kriging
HYMOS offers an alternative to station weight determination by kriging through the inverse
distance method. In this method the station weights and estimate are determined by:

        (3.21)

It is observed that the weights are proportional to the distance between “0” and station j to
some power p. For rainfall estimation often p = 2 is applied.

Different from kriging the Inverse Distance Method does not take account of station
clusters, which is convincingly shown in Table 3.5, last row; the estimate for “0” is seen to
be almost entirely determined by the cluster (1, 2) which is nearest to “0”. Hence, this
method is to be applied only when the stations are more or less evenly distributed and
clusters are not existing.

Example 3.3: Application of Kriging Method

The kriging method has been applied to monthly rainfall in the BILODRA catchment, i.e. the
south-eastern part of the KHEDA basin in Gujarat. Daily rainfall for the years 1960-2000
have been aggregated to monthly totals. The spatial correlation structure of the monthly
rainfall for values > 10 mm (to eliminate the dry periods) is shown in Figure 3.15.
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Figure 3.15:
Spatial correlation structure of
monthly rainfall data in and
around Bilodra catchment
(values > 10 mm)

From Figure 3.15 it is observed that the correlation only slowly decays. Fitting an exponential
correlation model to the monthly data gives: r0 ≈ 0.8 and d0 = 410 km. The average variance
of the monthly point rainfall data (>10 mm) amounts approx. 27,000 mm2. It implies that the
sill of the semi-variogram will be 27,000 mm2 and the range is approximately 1200 km (≈ 3
d0). The nugget is theoretically σP

2(1-r0), but is practically obtained by fitting the semi-
variogram model to the semi-variance versus distance plot. In making this plot a lag-distance
is to be applied, i.e. a distance interval for averaging the semi-variances to reduce the
spread in the plot. In the example a lag-distance of 10 km has been applied. The results of
the fit overall and in detail to a spherical semi-variogram model is shown in Figure 3.16. A
nugget effect (C0) of 2000 mm2 is observed.

Details of semi-variance
fit

Figure 3.16: Fit of spherical model to semi-variance, monthly rainfall Bilodra

Similarly, the semi-variance was modelled by the exponential model, which in Figure 3.17 is
seen to fit in this case equally well, with parameters C0 = 2,000 mm2, Sill = 27,000 mm2 and
Range = 800 km. Note that C0 is considerably smaller than one would expect based on the
spatial correlation function, shown in Figure 3.15. To arrive at the nugget value of 2,000 mm2

an r0 value of 0.93 would be needed. Important for fitting the semi-variogram model is to
apply an appropriate value for the lag-distance, such that the noise in the semi-variance is
substantially reduced.
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The results with the spherical model applied to the rainfall of June 1984 in the BILODRA
catchment is shown in Figure 3.18. A grid-size of 500 m has been applied. The variance of
the estimates is shown in Figure 3.19. It is observed that the estimation variance at the
observation points is zero. Further away from the observation stations the variance is seen
to increase considerably. Reference is made to Table 3.6 for a tabular output.

For comparisons reasons also the isohyets derived by the inverse distance method is
shown, see Figure 3.20. The pattern deviates from the kriging results in the sense that the
isohyets are more pulled towards the observation stations. As was shown in the sensitivity
analysis, the nearest station(s) weigh heavier than in the kriging method.

Figure 3.17: Fit of exponential model to semi-variogram, monthly data Bilodra

Figure 3.18 Figure 3.19
Isohyets of June 1984 rainfall in Bilodra catchment using by spherical semi-variogram
model (Figure 3.18) and the variance of the estimates at the grid-points (Figure 3.19).
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Figure 3.20: Isohyets derived for June 1984 rainfall in Bilodra catchment using
inverse distance weighting (compare with Figure 3.18)

Table 3.6: Example output of interpolation by kriging

Variogram parameters

   Nugget (C0):               2000.000000
   Sill (C1)                 25000.000000
   Range (a):                 1200.000000

 Grid characteristics:
   Number of cells in X, Y:        200         200
   Origin of X and Y Blocks:   0.000000E+00    0.000000E+00
   Size of X and Y Blocks:     5.000000E-01    5.000000E-01

 Search Radius:                1.000000E+10
 Minimum number of samples:           4
 Maximum number of samples:          15

Data: ANIOR     MP2 1 at       65.473      63.440 value:     10.40000
Data: BALASINOR MP2 1 at       59.317      21.981 value:       .00000
Data: BAYAD     MP2 1 at       49.430      52.552 value:      1.00000
Data: BHEMPODA  MP2 1 at       70.017      63.390 value:     18.70000
Data: DAKOR     MP2 1 at       39.945       -.552 value:    176.00000
Data: KAPADWANJ MP2 1 at       32.921      29.687 value:     11.00000
Data: KATHLAL   MP2 1 at       24.756      15.644 value:       .00000
Data: MAHEMDABADMP2 1 at         .122       7.998 value:     68.20000
Data: MAHISA    MP2 1 at       31.242      10.327 value:       .00000
Data: MAHUDHA   MP2 1 at       18.654       7.421 value:       .00000
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Data: SAVLITANK MP2 1 at       36.817      22.560 value:     54.00000
Data: THASARA   MP2 1 at       46.848       3.977 value:     22.00000
Data: VADAGAM   MP2 1 at       43.604      64.007 value:       .00000
Data: VADOL     MP2 1 at       45.951      23.984 value:       .00000
Data: VAGHAROLI MP2 1 at       52.382      13.755 value:      5.00000

 Estimated        40000 blocks
 average        17.581280
 variance      101.393300

 Column        Row        Estimate       Variance
    1           1       45.806480     2685.862000
    1           2       45.719250     2680.906000
    1           3       45.625660     2676.289000
    1           4       45.525860     2672.001000
    1           5       45.420020     2668.018000
                       etc.

4. Transformation of non-equidistant to equidistant series
Data obtained from digital raingauges based on the tipping bucket principle may sometime
be recording information as the time of each tip of the tipping bucket, i.e. a non-equidistant
series.

HYMOS provides a means of transforming such non-equidistant series to equidistant series
by accumulating each unit tip measurement to the corresponding time interval. All those time
interval for which no tip has been recorded are filled with zero values.

5. Compilation of minimum, maximum and mean series
The annual, seasonal or monthly maximum series of rainfall is frequently required for flood
analysis, whilst minimum series may be required for drought analysis. Options are available
in HYMOS for the extraction of minimum, maximum, mean, median and any two user-
defined percentile values (at a time) for any defined period within the year or for the
complete year.

For example if the selected time period is ‘monsoon months’ (say July to October) and the
time interval of the series to be analysed is ‘ten daily’, then the above statistics are extracted
for every monsoon period between a specified start and end date.

Example 5.1
From daily rainfall records available for MEGHARAJ station (KHEDA catchment), ten-daily
data series is compiled. For this ten-daily data series for the period 1961 to 1997, a few
statistics like minimum, maximum, mean, median and 25 & 90 %ile values are compiled
specifically for the period between 1st July and 30th Sept. every year.

These statistics are shown graphically in Fig. 5.1 and are listed in tabular form in Table 5.1.
Data of one of the year (1975) is not available and is thus missing. Lot of inferences may be
derived from plot of such statistics. Different pattern of variation between 25 %ile and 90
%ile values for similar ranges of values in a year may be noticed. Median value is always
lower than the mean value suggesting higher positive skew in the ten daily data (which is
obvious owing to many zero or low values). A few extreme values have been highlighted in
the table for general observation.
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Fig 5.1:  Plot of statistics of ten-daily rainfall series at MEGHARAJ station

Year Min. Max. Mean Median 25 %ile 90 %ile
1961 34.54 170.39 99.6 81.03 39.36 158.47
1962 5.6 237.6 78.9 8.6 8.4 197.5
1963 0 177.44 53.0 0 0 119.1
1964 0 157.2 39.7 20.7 1.7 69.6
1965 0 237 56.3 8 0 110.6
1966 0 151 31.4 0 0 98
1967 0 270 75.9 26 6 158
1968 0 211 63.0 0 0 185
1969 0 128 49.2 30 0 87
1970 0 287 120.7 50 0 232
1971 0 118.5 53.1 7 0 114
1972 0 99.6 29.9 7 2.6 83.3
1973 0 330.4 110.8 34.8 17 322.6
1974 0 51 16.5 5 1.5 31.2
1976 0 333.4 108.8 38.2 0 234.2
1977 0 175.4 67.6 18 7 164
1978 0 324 90.3 36 16 123
1979 0 282 46.0 0 0 67
1980 0 43 15.3 0 0 42
1981 0 198 81.0 65.5 16 115.5
1982 0 144 38.5 0 0 69
1983 0 256 84.7 54 12 219
1984 0 265 87.0 19.5 7.5 231.5
1985 0 140.5 36.9 3 0 127
1986 0 170 38.4 0 0 94.5
1987 0 287 38.5 0 0 33
1988 0 300 99.0 50 3 207
1989 0 140 72.3 44.5 9 138.5
1990 5 211.5 91.1 38.5 10 203.5
1991 0 361.5 56.7 4 0 41.5
1992 0 298 72.2 3 0 134
1993 0 336.5 75.7 8 0 269
1994 0 249 121.1 85 58.5 241.5
1995 0 276.5 85.9 9.5 0 264
1996 0 309 81.9 52.5 13.5 109
1997 0 391 105.7 23 10 242.5

Full Period 0 391 68.7

Table 5.1:  Ten-daily statistics for MEGHARAJ station between 1st July and 30st Sept

Min., Mean and Max. Ten-daily Rainfall During Monsoon Months

Min.-Max. & 25 & 90 %iles Mean Median

Time
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